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Abstract 

In the 3-dimensional profile  method, the compatibility of an  amino acid sequence for a given protein  structure 
is scored as the sum of the preferences of the residues for their  environments in the 3D  structure.  In  the original 
method (Bowie JU, Luthy R, Eisenberg D, 1991, Science 253:164-170), residue environments were quantized into 
18 discrete environmental classes. Here,  amino acid residue preferences are expressed as a  continuous  function 
of environmental variables (residue area buried and fractional  area buried by polar  atoms).  This  continuous rep- 
resentation of residue preferences, expressed as a  Fourier series, avoids the  abrupt change of preference of resi- 
dues in slightly different  environments, as encountered in the original  method with its 18 discrete environmental 
classes. When compared with the discrete 18-class representation of  residue environments, this continuous 3D pro- 
file is found  to be more sensitive in identifying sequences that fold into  the profiled structure but share with it 
little sequence identity.  The  continuous  3D  profile is also less sensitive to errors in environmental variables than 
is the discrete 3D  profile. The continuous 3D profile can also be used to detect wrong folds or incorrectly mod- 
eled segments in an otherwise correct structure, as could the discrete 3D profile (Luthy R, Bowie JU, Eisenberg D, 
1992, Nature 35683-85).  Moreover, the progress of structure improvement during atomic refinement can also 
be monitored by examining the profile scores in a moving-window scan. Finally, by defining a  functional form 
for profile scores, we open the way to profile atomic refinement in  which an  atomic structure adjusts  to produce 
residue environments  more  compatible with the protein side chains. 

Keywords: amino acid  sequence analysis; homologous modeling; inverted protein folding; protein properties; struc- 
ture prediction 

The inverted protein folding problem, of finding which amino 
acid sequences fold into a known 3-dimensional structure, was 
addressed in the 3D  profile  method  of Bowie et al. (1991) by 
finding sequences that  are most  compatible with the environ- 
ments of the residues in the  structure. In  this  method, the envi- 
ronment  of each residue position within the folded protein is 
characterized on  the basis of 3 properties: (1) the  area of side 
chain that is buried by other protein atoms (referred to  as “area 
buried” hereafter); (2) the fraction of side-chain area that is cov- 
ered by polar atoms (referred to  as “fraction polar” hereafter); 
and (3) the secondary structure. The secondary structure is  clas- 
sified in 3 states: helix, sheet, and coil, based on the main chain 
hydrogen-bonding  pattern.  The residues are first divided into 
6 classes based on  the  area buried and  fraction polar (see Fig. 4 
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of  Bowie  et al., 1991). Further subdividing these 6 classes  by the 
3 secondary structure  states yields  18 environmental classes in 
total.  In short, each position in a  3D  structure can be assigned 
to 1 of the 18 environmental classes. 

The preferences of the 20 amino acids for each of these 18 en- 
vironmental classes, called “3D-1D scores,” are derived from a 
set of well-refined protein  structures, together with sets of se- 
quences homologous to  the sequence of the 3D  structure. This 
classification of environments enables a  protein  structure to be 
coded by a sequence in an 18-letter alphabet, in which each let- 
ter represents the environmental class of a residue position. A 
3D  profile is constructed by associating with the environmen- 
tal class of each position the 20 3D-1D scores of amino acids for 
this class. This  original 3D profile,  created from  the represen- 
tation of environments by  18 discrete classes, is referred to in 
the present paper as a “discrete 3D profile.” Dynamic program- 
ing (Needleman & Wunsch, 1970; Smith & Waterman, 1981)  was 
used to find the best match  of  a test sequence with the discrete 
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3D  profile. The method was tested on several families of pro- 
teins and was able to identify the  structural similarity of pro- 
teins, some of which share no detectable sequence similarity 
(Bowie et al., 1991). 

Luthy et al. (1992) used the 3D  profile  method to assess the 
correctness of a protein model. They demonstrated that the com- 
parison of the 3D  profile, calculated from  the model structure, 
with its own amino acid sequence can be used as an effective test 
of the accuracy of structure model. The 3D profiles of correct 
protein  structures match their own sequences with high scores, 
whereas 3D profiles from incorrect protein models score poorly. 
An incorrectly modeled segment in an otherwise correct struc- 
ture can be identified by a 3D profile window plot (Luthy et al., 
1992),  in  which the average profile score for  a window  of  21  res- 
idues is plotted against sequence number. 

There are  both strengths and weaknesses  in representing a pro- 
tein structure in terms of 18 discrete environmental classes. The 
major strength is that such a  representation provides a means 
whereby a 3D structure can be represented by a string of letters, 
analogous to a  protein amino acid sequence, but with no direct 
reference to  the  amino acids in any given sequence. Further- 
more,  the use of discrete classes is necessary for accumulating 
adequate statistics of 3D-1D scores when only  a few structures 
and homologous sequences are available. The use of discrete 
classes also averages out noise in the data. But,  the discrete rep- 
resentation of residue environments also has  weaknesses. A ma- 
jor weakness is that the division into discrete classes means that 
because  of sharp class boundaries, an infinitesimal change in the 
area buried or fraction polar of a residue can change its environ- 
mental class and thus can alter the residue preferences dramati- 
cally.  Because  of the finite precision of computer arithmetic, and 
because of the discrete algorithms used for area calculations, the 
environmental  class  of a residue computed with our program could 
depend even on  the orientation of the molecule on the  grid. 

To overcome these shortcomings of the discrete environmen- 
tal classes, we introduce here a continuous representation of the 
residue preferences as a function of the environmental variables 
area buried and fraction polar. The  continuous  function we 
chose is expressed as a  Fourier series. The  method used in de- 
riving the coefficients in the Fourier series  is  described here, and 
the improved results of this continuous 3D profile are discussed. 

Theory 

The preference of residue i at secondary structure  state j in en- 
vironment (b,  p )  is defined as the information value Si (b, p )  
(Fano, 1961): 

where P (  i I j ,  b, p )  is the conditional probability of finding res- 
idue i at secondary structure  state j in environment (b ,  p )  with 
area buried b and fractional polarityp; P (  i, j ,  b, p )  is the  joint 
probability  of residue i ,  secondary structure state j ,  area bur- 
ied b, and fractional polarityp; P (  i )  is the a  priori  probability 
of residue i derived from amino acid compositions; P (  j ,  b, p )  
is the joint probability of secondary structure state j ,  buried area 
6, and fractional  polarity p ,  where 

P(i) = C C P ( i ,   j ,  b, P) (2) 
j b.p 

These quantities are evaluated as described by  Bowie  et al. (1991) 
by counting the number of residues of each type in each type 
of environment. 

The residue preference at a given secondary structure  state 
can be represented as a continuous function of its environments 
(b, p ) .  We chose to use a 2-dimensional Fourier series as this 
continuous  function. 

Notice that because the residue preference Sij (b ,  p )  is a real 
function, the Fourier coefficient fk l  is therefore a complex Her- 
mitian function.  Hence, we need to sum only over the indices 
k = [0, m ]  and I = [ -n, n], where m and n are  the maximum 
orders of the indices. 

If residue preferences S,‘j (b ,  p )  are observed at some sam- 
pling points of (b, p )  as described above,  a set of Fourier coef- 
ficients f k l  for  function S,( b, p )  that best represents the 
observed values Si( b, p )  can be evaluated by a least-squares 
minimization  method. 

Let the residual vector between the function Sij(b, p )  and the 
observed data S:(b, p )  be represented by matrix notation, 

where [ ) represents a  matrix  formed by a set of elements rij.  
We need to minimize the residual rTr: 

where the superscript T  denotes  transpose. 
Let the  partial derivative matrix be represented as 

and  the Fourier coefficient matrix be represented as 

where k = [0, m ]  and I = [ - n ,  n ] .  

tions to get the Fourier coefficients, x, 
Then we need to solve the following system of linear equa- 

A’Ax = AT b, (9) 

where b is the negative of the residual vector: 

b = -r = [S$(b ,  p )  - Sij(b, p ) ) .  (10) 

Because the partial derivative matrix A is independent of x, the 
coefficients x can be solved directly by matrix inversion: 

The inversion of matrix (ATA)” is performed by Gauss- 
Jordan elimination method. 
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Therefore, given observed residue preferences S$(b, p )  at 
different values of the variables buried area b and fractional po- 
larity p for residues i at a given secondary structure  state j ,  we 
can evaluate the Fourier coefficients by a least-squares method, 
as described above. 

We can use a  smoothing factor, analogous to  the Debye- 
Waller thermal factor (or B-factor) in X-ray crystallography, to 
average over a small area near the calculated area buried and 
fraction polar to reflect the accuracy of atomic positions in the 
model.  This  smoothing  factor can be varied to select an opti- 
mal value for a given set of observations.  The  smoothing can 
be conveniently performed by multiplying the  Fourier coeffi- 
cients (Equation 4)  by an  exponential term, 

~ , ( b ,  p )  = C f k / e - 2 * ‘ ( k b + / P ) e - B ( k 2 + / * )  (12) 
k. / 

where B is the smoothing factor. 
Given these Fourier  coefficients, the preferences of the 20 

amino acid types for a position can be evaluated from the sec- 
ondary  structure  and  the values of the environmental variables 
area buried and  fraction polar of that position.  This represen- 
tation of residue preferences by a  continuous  function serves 2 
purposes.  First,  it  creates  a smooth surface from a discrete set 
of observed data. Second, it can be  used to interpolate between 
data points. 

A 3D profile (Bowie  et al., 1991) can be created using  this con- 
tinuous representation of residue  preferences  in  place  of the orig- 
inal discrete representation. This new 3D  profile, which has 
exactly the same  matrix form  as  the original  profile, is referred 
to as a  continuous 3D profile. 

Results 

The continuous 30-10 scoring surface 

A database of 16 well-refined structures from the  Protein Data 
Bank (Bernstein et al., 1977) and sets of highly homologous 
sequences aligned to  the sequences of these structures (Liithy 
et al., 1991)  were  used to generate the residue preferences in dif- 
ferent  environments. The secondary structures for all residues 
in the 3D structure were evaluated with the DSSP program 
(Kabsch & Sander, 1983). The buried surface  area for each side 
chain and  the fraction of side-chain area covered by polar  at- 
oms were calculated using the program ENVIRONMENTS-3D 
of Bowie  et al. (1991). 

We divided the area buried and fraction  polar each into 32 
equal bins for each of  the 3 secondary structure classes of each 
of the 20 residues. The score value was from interpolating  the 
3D-1D scoring table of Bowie  et al. (1991).  Since the 3D-1D  scor- 
ing surface is not a periodic function, the border regions are pad- 
ded with the scores of their nearest neighbors in order to prevent 
aliasing. We then used a least-squares minimization method to 
evaluate the Fourier coefficients, as described in the Theory sec- 
tion. We chose to use a fourth-order Fourier series ( k  = I = 4 
in Equation 12) to represent the residue preference surface. For 
each residue type at each secondary structure  state, a set of 
64-term Fourier coefficients was evaluated. Therefore, we have 
altogether 60 sets of 64-term Fourier coefficients to represent 
the preferences of all the residues in all secondary structure 
states. 

Figure 1A shows a discrete 3D-1D scoring surface (Bowie 
et al., 1991) for tyrosine in the &sheet secondary structure state. 
For comparison,  Figure 1B shows the scoring surface for tyro- 
sine in the &sheet state as a  continuous  function of area  bur- 
ied and  fraction  polar, represented by a Fourier series. Both 
these scoring surfaces share  the same general features of favor- 
able and unfavorable regions of area buried and fraction  polar. 
However, the  smooth scoring surface in the Fourier series rep- 
resentation  avoids abrupt changes of score when the area  bur- 
ied or fraction  polar moves across class boundaries. 

Tests of continuous 3 0  profiles 

We tested continuous 3D profiles, created with the  continuous 
representation of residue preferences as a  function of environ- 
ment, in  searches for sequences that  are compatible with the pro- 
filed structure. 

3 0  compatibility searches with a continuous 
profile compared to that for a discrete profile 
for  sperm whale myoglobin 
In  comparing  continuous and discrete 3D profiles for  the re- 

fined structure of sperm whale myoglobin (lMBO), we first de- 
termined the optimal value  of the smoothing factor B by varying 
the value for B in Equation 12. The resulting continuous 3D pro- 
files  were  used to score all protein sequences in a sequence data- 
base containing 59,091 nonidentical sequences. The relative 
effectiveness of different profiles is shown in Figure 2. In this 
figure, the most effective profiles are those with higher plots, 
as explained in the following. In  a compatibility search with a 
given profile,  each sequence receives a profile score for the  op- 
timal alignment of that sequence with the profile. These profile 
scores are then expressed as Z-scores, the number of standard 
deviations above the mean profile score normalized for sequence 
length. Then, sequences are ranked by their Z-scores and plot- 
ted as in Figure 2, where the number of globin sequences hav- 
ing that Z-score or  a higher value (“Number of globins”) is 
plotted on  the  ordinate  as a  function of the  total number of se- 
quences examined in decreasing Z-score. In this plot,  a perfect 
profile would  be represented as a line of slope 1 extending to the 
number of globin sequences in  the  database (691 in this  exam- 
ple) and then would turn horizontal, because each additional se- 
quence  of lower Z-score would be a  non-globin. For less than 
perfect profiles, some non-globins will have  higher Z-scores than 
some globins, and  the trace will fall below that  for a perfect 
profile. 

This relative  effectiveness  of various profiles can be  seen more 
easily  in the inset to Figure 2, which enlarges the region around 
700 sequences examined. From this region,  it appears that values 
between 0.0 and 0.1 for the smoothing factor B are the most dis- 
criminating for the recognition by the profile of its own and very 
similar sequences, and yet are still sensitive in identifying re- 
motely related sequences. Figure 2, however, does not reveal the 
effect of the smoothing  factor on  the Z-scores assigned by the 
profile to  the sequences. Figure  3 gives this information: it 
shows the number of globins correctly identified as a  function 
of Z-score, comparing  the discrete profile with continuous  pro- 
files  having various smoothing factors. The “number of globins” 
is a cumulative number of all globins with Z-scores  above the 
Z-score of the abscissa. Judging from Figure 3, the continuous 
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A 

Fig. 1. A: 3D-1D preference scores for tyrosine in  &sheet for 6 discrete 
environmental classes. The preference is shown on the vertical axis as 
a function of the 2 environmental variables, area buried and fraction 
polar. B: 3D-1D preference for tyrosine in &sheet as a continuous func- 
tion of the environmental variables area buried and fraction  polar. No- 
tice that A and B have the same general shape, but that B lacks the 
discontinuous steps of A. 

profile with B = 0.1 gives the best result. This profile, compared 
to the discrete profile and other continuous profiles, assigns  higher 
Z-scores to its own sequence and closely related myoglobins and 
hemoglobins, and also higher Z-scores to even remotely related 
leghemoglobins (these are sequences with Z-scores around 8). 
The increased sensitivity of the continuous profile in the region 
of Z-score = 8 is of practical importance, because this is the typ- 
ical Z-score for a distantly related sequence, which  is compati- 
ble  with the fold of the profiled protein. 

3 0  compatibility searches  with  continuous profiles 
having  various B-factors for dogfish muscle 
lactate  dehydrogenase as compared 
with  that of the  discrete profile 
To evaluate both discrete and continuous profiles with vary- 

ing smoothing factors, we also compared the results of compat- 
ibility searches for a 3D profile prepared from  the structure of 
lactate dehydrogenase (6LDH). Both malate dehydrogenase and 
alcohol dehydrogenase share the same dinucleotide binding mo- 
tif (Rao & Rossmann, 1973) as lactate dehydrogenase. The se- 
quence identity between malate dehydrogenases and lactate 
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Fig. 2. Effectiveness of several profiles as indicated by the number of 
globins identified as a function of number of high-scoring sequences in 
a 3D profile  compatibility  search, using both discrete and continuous 
3D profiles prepared from  the  structure lMBO with various smooth- 
ing factors. A gap-opening penalty of 4.5 and gap-extension penalty of 
0.05 were used for the compatibility searches. The inset is an enlarge- 
ment of a region that is more  important for comparison. A perfect se- 
lection is a  straight line with slope  equal to 1 that  turns horizontal at 
the point corresponding to the number of globin sequences (691). NO- 
tice that the most effective B-value is 0.1. 

dehydrogenases is about 23% on average. The sequence iden- 
tity  between alcohol dehydrogenases and lactate dehydrogenases 
is about 20% on average. Figure 4 shows the number of  se- 
quences and their average Z-scores identified for  lactate, ma- 
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Fig. 3. Number of globin sequences assigned 2-scores  above  a  thresh- 
old as a  function of Z-scores in a compatibility search, using both dis- 
crete and continuous 3D profiles prepared from the structure lMBO with 
various smoothing factors. Notice that  the most effective B-value  is 0.1. 
In the range of Z-scores 28-35, there are no globin sequences assigned. 
This corresponds roughly to the division of Z-scores between myoglo- 
bins and hemoglobins. Those sequences with Z-scores above 35 are 
mostly myoglobins, and those sequences with Z-scores between 10 and 
28 are hemoglobins. Most of the leghemoglobins are assigned 2-scores 
between 5 and 10. The diagram shows that the  continuous 3D profile 
does  better  than  the discrete 3D profile both  at high Z-score and  at Z- 
score around 5-10. This low Z-score region is important  for detecting 
distant sequences. 
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Fig. 4. Number of dehydrogenase sequences found to be compatible 
with  continuous  3D  profiles  prepared  from  the  structure  6LDH  and  their 
average Z-scores as a function of smoothing factors. The correspond- 
ing  results for the  discrete profile are also shown on the leftmost col- 
umn  for comparison. The ordinate  is  the smoothing factor. (Note: The 
leftmost column corresponds to the  discrete profile.) The abscissa on 
the left is  the  number of dehydrogenases;  the  abscissa on the  right is the 
average  Z-score. ADH, alcohol  dehydrogenase; LDH, lactate  dehydrog- 
enase; MDH. malate  dehydrogenase; DH, dehydrogenase;  DP,  discrete 
3D profile. Notice that  the  most effective B-value is 0.1. 

late, and alcohol dehydrogenases from  a compatibility search 
based on the 6LDH structure. Based on these results, the opti- 
mum value for  the smoothing  factor is about 0.1. Notice that 
the continuous profile identifies lactate dehydrogenase sequences 
with higher  Z-scores than does the discrete profile (results shown 
at  the left of the figure). Notice also that the  continuous pro- 
file identifies more malate dehydrogenases and with overall 
higher Z-scores than does the discrete profile. Moreover, the 
continuous profile of 6LDH also assigned 2-scores  above 3 to 
12 alcohol dehydrogenases. In contrast,  the discrete profile of 
6LDH failed to assign any alcohol dehydrogenase sequence a 
Z-score above 3. Thus,  the  continuous  profile with smoothing 
factor B = 0.1 is considerably more effective than  the discrete 
profile in recognizing compatibility of structure with distantly 
related sequences folded the same way. 

Comparing 3 0  structure compatibility search 
with ID sequence homology search for 
common  carp parvalbumin 

We have shown above that in the  structure compatibility 
searches for  both sperm whale myoglobin and dogfish muscle 
lactate dehydrogenase, continuous profiles are more effective 
than their corresponding discrete profiles. Here we compare  a 
3D structure compatibility search with a sequence homology 
search (Gribskov et al., 1987) using common carp parvalbumin 
as the test protein.  This  protein  has the further  advantage that, 
unlike globins and dehydrogenases, it was not in the  database 

of proteins used to derive the 3D-1D scores. Thus, the possibil- 
ity of residual memory of sequence in 3D profiles is also tested. 

A structure compatibility search  was performed using the con- 
tinuous 3D profile from the  structure of common carp parval- 
bumin (4CPV) (Kumar  et  al., 1990). Similarly,  a sequence 
homology search was performed using a sequence profile cre- 
ated  from the sequence of 4CPV. The continuous profile iden- 
tified 78 closely related sequences of parvalbumin, calmodulin, 
and  troponin, whereas the sequence profile identified 67 of 
them. The continuous profile also detected 9 sequences of cal- 
cineurin,  calretinin, and neurocalcin believed to have EF-hand 
fold, whereas the sequence profile failed to detect any of these 
sequences. Moreover, the  continuous profile identified many 
myosin regulatory light chain sequences that have the same EF- 
hand motif as  parvalbumin (Rayment et al., 1993). Figure 5 
shows the  distribution of the Z-scores for those myosin  se- 
quences both from the continuous profile compatibility search 
and from the sequence profile homology search. Sequences  with 
Z-scores greater than 6 are generally folded in the same way as 
the  structure represented by the profile. The continuous profile 
detected 56 myosin  sequences  with Z-score above 6; in contrast, 
none of the myosin sequences scored higher than 6 in the se- 
quence profile. It is difficult to use sequence homology to in- 
fer structural similarity  when  sequence  identity drops below 25% 
(Doolittle, 1986). The sequence identities of these myosin  se- 
quences  detected by the continuous profile with that of the parv- 
albumin  range  from 16 to 30%. as shown in Figure 6. The 
majority of them are  around 19-20%. This  demonstrates  that 
the continuous profile is sensitive in detecting distant structure- 
sequence relationships for which  sequence identity is  well  below 
the 25% sequence level. Because the test is  with a protein not 
used to determine 3D-1 D scores, it also demonstrates that the 
effectiveness of the  continuous 3D profile is not due  to  anyre- 
sidual memory of the sequence of the profiled structure. 

.-I 25 
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Fig. 5. Distribution of 2-scores for  the myosin sequences identified by 
the sequence profile and the continuous profile of common carp  parv- 
albumin (4CPV). The  ordinate  is  the  average  Z-score for the  myosin se- 
quences. The abscissa is  the  number of myosin sequences  at a given 
Z-score. A gapopening penalty of 4.5 and  gap-extension  penalty of 0.05 
were  used for both the  structure compatibility search and the sequence 
homology search.  The continuous profile  assigned  Z-scores  greater  than 
6 to many  myosin  sequences,  in  contrast to the  sequences profile, which 
assigned no Z-scores higher  than 6 to myosin sequences. 
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Fig. 6. Histogram  of  the  sequence identities for all myosin sequences 
identified by the sequence and  continuous profile of 4CPV with Z-score 
above 6. These sequences have sequence identities with the sequence of 
4CPV ranging  from 16 to  30%. Most of the sequences identified have 
sequence identities around 19-20%. This  demonstrates  that  the  contin- 
uous  3D  profile is effective in recognizing distantly  related sequences. 

The  continuous profile compared  with  the  discrete 
profile and the  sequence profile for bovine 
superoxide  dismutase 
The greater sensitivity of the  continuous  profile in detecting 

distant relationships than either the sequence profile or the dis- 
crete profile is demonstrated further in the case of bovine su- 
peroxide dismutase. We created a  continuous 3D profile and  a 
discrete 3D profile from the structure of bovine Cu, Zn super- 
oxide dismutase (2SOD) vainer et al., 1982) and also a sequence 
profile from the sequence of 2SOD. Each of these 3 profiles was 
used to score sequences  in a database. The continuous, discrete, 
and sequence profiles all identified 5 1 closely related superox- 
ide dismutase sequences. However, the  continuous profile and 
the discrete profile were able to identify many immunoglobu- 
lin  sequences that have a Greek-key  fold similar to that of 2SOD 
(Richardson et al., 1976). Figure 7 shows the  distribution of the 
Z-scores for those immunoglobulin sequences  identified by these 
3 profiles. The sequence profile failed to detect any immuno- 
globulin sequences with Z-score above 6. The discrete profile 
identified  only 13 immunoglobulin sequences, as compared with 
66 identified by the  continuous profile. The sequence identities 
of these immunoglobulin sequences detected by the  continuous 
profile with the sequence of 2SOD range  from 11 to  26%, as 
shown in Figure 8. Their average sequence identity is around 
16%. This shows that  the continuous  profile is more sensitive 
in detecting distant sequence-structure relationships than either 
the discrete profile or the sequence profile. 

3 0  profile window plots 

Sensitivity of 3 0  profile window plots  to errors 
in the  environmental  variables 
The 3D profile window plot (Luthy  et al., 1992)  is a tool  to 

assess the accuracy of a 3D protein structure, based on the com- 
patibility of a structure with its own  sequence. The average pro- 
file score for each  21-residue  segment  is plotted against sequence 
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Fig. 7. Distribution of 2-scores for  the immunoglobulin sequences iden- 
tified by the  sequence  profile  and  the  discrete  and  the  continuous  3D 
profiles of Cu, Zn superoxide  dismutase  (2SOD).  The  ordinate is the 
average Z-score for  the  immunoglobulin sequences. The abscissa is the 
number of immunoglobulin sequences at a given Z-score. A gapopening 
penalty of 4.5 and gap-extension penalty of 0.05 were used for  both  the 
structure  compatibility  search  and  the  sequence  homology  search.  The 
continuous  3D  profile assigned Z-scores  greater  than 6 to  66  immuno- 
globulin sequences; in contrast,  the discrete 3D profile assigned Z-scores 
greater  than  6 to 13 immunoglobulin  sequences,  and  the  sequence  pro- 
file assigned no Z-scores higher than  6  to  immunoglobulin sequences. 

number. Segments scoring poorly have environments incompat- 
ible  with the sequence and suggest errors in the structure of these 
segments. However, the details of a profile window plot pre- 
pared from a discrete 3D profile can vary significantly with the 
orientation of coordinates of the  same  structure,  as explained 
below. We tested both the discrete and continuous profiles cre- 
ated from the same structure of myoglobin (IMBO)  and rotated 
the coordinates  randomly  9 times. A window plot for all the  9 
coordinates was generated using discrete profiles. as shown in 
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Fig. 8. Histogram  of  the  sequence identities for all immunoglobulin 
sequences identified by the sequence profile and  the discrete and the con- 
tinuous  3D profiles of 2SOD with Z-score above 6. These immunoglob- 
ulin sequences identified by the  continuous  3D  profile  have sequence 
identities with the sequence of  2SOD  ranging  from 11 to  26%.  The  av- 
erage percent residue identity is 16%.  This  demonstrates  that  the  con- 
tinuous  3D profile is effective in recognizing distantly related sequences. 
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Figure  9A. The discrete profile showed significant variation in 
almost all regions. In contrast,  the window plot created with the 
continuous profile (Fig.  9B)  is almost unaffected by orientation. 
When examining the environmental classes of the discrete pro- 
files for different  orientations,  it was found  that  the environ- 
mental classes changed for  up  to  9% of the residues, although 
the residues remain in  exactly the same environment in the struc- 
ture. The reason for  the changes is the sampling error in esti- 
mating the area buried and fraction polar. Different orientations 
of coordinates yield slightly different values of area buried and 
fraction  polar. Small as they may be, if they are near the  bor- 
der between 2 classes, this small difference is enough to change 
the classification of the residue environment. In contrast,  for 
a continuous profile, because the residue preference varies 
smoothly with the  area buried and fraction  polar, it prevents an 
abrupt change of preference with a small change in orientation. 

Detecting wrong folds and monitoring the 
progress of structure refinement 
The  continuous 3D  profile  can be used to detect wrong folds 

or  an incorrect segment in an otherwise correct  structure in the 
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Fig. 9. A: Sensitivity of discrete 3D profiles, illustrated by a 3D pro- 
file window plot (Luthy et al., 1992) for lMBO with discrete 3D pro- 
files created  from  coordinates  rotated  randomly  9 times. The vertical 
axis shows the average 3D-1D score for residues in a 21-residue sliding 
window, the center of which  is at the sequence position indicated by the 
horizontal axis. Scores for the first and  the last 9 sequence positions have 
no meaning due to the averaging. B: Stability of continuous 3D profiles, 
illustrated by 3D profile window plot for lMBO with continuous 3D pro- 
files created from coordinates  rotated  randomly  9 times, which are the 
same as the  coordinates used in A. Notice that the  fluctuation of pro- 
file scores in B is significantly less than  that in A. 

same way as the discrete profile (Liithy et al., 1992). An  incor- 
rectly modeled region tends to have a score near or below zero 
in a profile window plot. Similarly, the 3D profile can also be 
used to monitor  the progress of structure refinement. Generally, 
a well-refined structure  has higher profile  score than  the un- 
refined structure. The  improvement of the model at different 
regions can be shown from a profile window plot. 

The  detection of an incorrect segment of the model and  the 
monitoring of the progress of refinement are illustrated for diph- 
theria toxin (DT) in Figure 10. Diphtheria toxin is a member of 
ADP-ribosylation toxins. The crystal structure of DT was  solved 
initially at 2.5 A by Choe et al. (1992) and refined to 2.0 A by 
M.J. Bennett and D. Eisenberg (“The refined structure of di- 
meric diphtheria toxin at 2 A resolution,” ms.  in prep.). In a pre- 
liminary trial model built into a 3.0-A electron density map, 
much of the C-terminal receptor binding domain (R-domain) 
was at first reversed. However, it was rebuilt as the resolution 
and quality of the electron density map was improved by phase 
refinement and extension to 2.5 A.  Figure 10 shows the profile 
window plots of the trial model with reverse-traced R-domain, 
the 2.5-A model, and the 2.0-A-refined model.  The profile 
scores in the R-domain (residues 380-518) are near or below 
zero, suggesting that this region was incorrect, as in fact it was. 
The R-domain in the 2.5-A model has a significantly higher 
score, confirming that the trial model was incorrect. The scores 
in the profile window plot for the 2.0-A-refined model are gen- 
erally higher than those for  the 2.5-A model, reflecting the im- 
proved structure of the 2.0-A-refined model. The places  with the 
greatest improvement reflect an initial misregistration of the se- 
quence with the electron density, which  was corrected during re- 
building. The profile score for the 2.0-A-refined model has one 
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- - .  - DT  refined at 2.5A .~ 
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Fig. 10. Continuous 3D profile window plot for 3 models of diphthe- 
ria toxin. The abscissa is the position  in the sequence  of diphtheria toxin. 
The ordinate is the profile score averaged by a 21-residue window cen- 
tered around  that resjdue. The profile window plots for  an initial trial 
model and  for 2.5-A and 2.0-A models are represented by dotted, 
dashed, and solid  lines,  respectively. The profile scores  in the C-terminal 
R-domain of the trial model are near or below zero, showing that this 
segment of the trial mpdel was incorrect in this region. The profile score 
for the published  2.5-A  model  with proper R-domain scored  much  higher 
than  the corresponding regioqin the trial model. The profile scores are 
significantly higher in the 2.0-A-refined model than in the 2.5-A model. 
Notice the dip near residues 380-387 in the 2.0-A-refined model corre- 
sponds to a hinge loop that is  in a high energy state (Bennett & Eisen- 
berg, in prep.). 
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noticeable dip near residues 380-387. These residues are in the 
hinge loop, which changes conformation when DT dimerizes by 
domain swapping, as discussed in detail by Bennett and Eisen- 
berg (in prep.). 

Discussion 

In this paper we introduce  continuous 3D profiles, in  which the 
scores for protein side chains change smoothly as their environ- 
ments  change. These profiles have the same form  and  are used 
in the  same way as the original discrete 3D profiles. However, 
compatibility searches  based on continuous 3D profiles are more 
specific and selective than those of discrete 3D profiles. As il- 
lustrated by the tests presented here, the Z-scores for highly ho- 
mologous sequences are  almost always  higher when using 
continuous 3D profiles in place  of  discrete  3D profiles. This sug- 
gests that the continuous 3D profile is more specific than the dis- 
crete 3D profile.  Moreover, the continuous 3D profile is also 
more tolerant and accommodating for sequences that adopt the 
same fold as  the profiled structure  but  share little sequence sim- 
ilarity.  From the result shown in Figure 4, the  continuous 3D 
profile detects more sequences of malate dehydrogenase with 
higher Z-scores than does the discrete 3D  profile, and also as- 
signs  higher  scores to the distantly related alcohol dehydrogenase 
sequences. This also demonstrates that a  continuous 3D profile 
can be more selective than a discrete 3D profile. 

Compatibility searches with profiles prepared from bovine 
Cu, Zn  superoxide  dismutase and common  carp  parvalbumin, 
using both  the discrete and  the continuous 3D profiles,  further 
demonstrate that the  continuous 3D profile is more sensitive to 
distant structure-sequence relationships than the discrete 3D 
profile.  Moreover, the greater sensitivity of the  continuous  3D 
profile over the sequence profile for both  common carp parv- 
albumin and bovine superoxide dismutase demonstrates that  the 
better specificity and selectivity  of continuous 3D profiles is not 
the result of database bias. Neither of these 2 structures was in- 
cluded in the  database of well-refined structures in obtaining the 
3D-1D scoring table. In both these cases, the continuous pro- 
files assigned significant profile scores to sequences that have 
only 15-20% sequence identity with the profile sequence. At the 
15-20% level, structure similarity can be difficult to detect by 
sequence homology searches. 

The  continuous 3D profile is  less sensitive to errors in the en- 
vironmental variables than  the discrete 3D profile,  and yet it is 
also more sensitive to small differences in the  model,  for exam- 
ple at successive stages of refinement of an X-ray structure. This 
sensitivity is important not so much for identifying severe er- 
rors, but more for sensing  slight changes of residue environment 
arising from slight changes of atomic position during  refine- 
ment.  The  continuous preference function serves this  purpose 
well. The test  with a molecule  having different orientations dem- 
onstrates that  the continuous profile is virtually independent of 
the  orientation,  as it  should be. The remaining slight variation 
of profile scores in the 3D profile window plot is due to the sam- 
pling error in the accessible surface area calculation. 

The continuous  3D  profile  can be used to detect wrong folds 
or  to monitor the progress of the structure  improvement by a 
profile window plot. Because the continuous  profile is less sen- 
sitive to measurement errors in the environmental variables, the 

be confidently attributed to  the differences in the quality of the 
models. 

Notice that the reason we compute the residue preferences as 
a  continuous  function of environmental variables starting from 
data derived from only 6 environmental classes is because we 
lack enough data  for a finer sampling. The  advantage of the 6 
environmental classes  is that they recognize the essential char- 
acteristics of the environments, as specified by the variables area 
buried and fraction polar,  and  thus  are able to bridge the  gap 
between structure  and sequence. A finer sampling of area  bur- 
ied and fraction  polar  can be  used once  a sufficient number of 
well-refined structures is available. 

This method of representing residue  preferences as a continuous 
function of environment  can be easily extended to incorporate 
more  continuous variables that characterize the  environment. 
If more parameters were found to be useful determinants of pro- 
tein stability, they can be incorporated  into this scheme by add- 
ing other dimensions. 

The representation of  residue preference as a continuous func- 
tion of residue environment (area buried and fraction polar) has 
an  altogether new implication: the derivatives of residue pref- 
erence with respect to the  environmental variables, area buried 
and fraction polar, can be obtained analytically. This develop- 
ment offers  the possibility  of representing the residue preference 
as a  continuous  function of atomic positions, since area buried 
and fraction polar can be expressed as functions of atomic posi- 
tions (Richmond, 1984;  Wesson &Eisenberg, 1992;  von Freyberg 
& Braun, 1993). Moreover, the derivatives  of  residue preference 
with respect to atomic positions can be obtained analytically. 
This  opens  the possibility of adding profile preferences to es- 
tablished refinement methods, by maximizing the residue pref- 
erences over the whole structure  through a  gradient-driven 
algorithm.  The established refinement methods to which pro- 
file preferences could be added include X-ray and NMR refine- 
ments and energy refinements. 
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